
Journal of Statistical Physics, Vol. 54, Nos. 5/6, 1989 

Effect of External Fluctuations on the Fr6edericksz 
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The influence of multiplicative external fluctuations (noise) on the 
phenomenological equation describing the Fr6edericksz transition has been 
studied by means of an electronic analogue simulator. Measurements were made 
of the stationary probability density for a wide range of fluctuation intensities 
and correlation times, for both dichotomous and Gaussianly distributed noise. 
For dichotomous forcing, the resultant phase diagrams at particular values of 
the field intensity parameter were found to be in satisfactory agreement with 
exact theoretical predictions by Horsthemkeetal. In the (physically more 
realistic) case of Gaussian fluctuations, for which no theory is currently 
available, the results obtained were distinctively different. A physically 
motivated discussion is given to account for the interesting differences and 
similarities of behavior found for the two types of external noise. 
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colored noise; dichotomous noise; noise-induced transitions. 

1. I N T R O D U C T I O N  

The macroscop ic  behav ior  of  a non l inea r  system can  often be subs tan t ia l ly  
modif ied  by the effect of  a f luctuat ing envi ronment .  (l) This  is especial ly the 
case if the f luctuat ions  (noise)  are  coupled  to the system mult ipl icat ively ,  
when they can induce t rans i t ion  p h e n o m e n a  which canno t  occur  under  
de terminis t ic  env i ronmen ta l  condi t ions .  A l though  the phenomeno log ica l  
s tochas t ic  differential  equa t ions  assoc ia ted  with such systems are difficult to 
solve, ~1'2) progress  can often be made  by  use of cer ta in  ideal izat ions ,  such 
as regard ing  the s tochast ic  var iable  to be white and  Gauss i an ly  d is t r ibuted;  
the white noise idea l iza t ion  is a good  a p p r o x i m a t i o n  when the env i ronmen-  

tal  f luctuat ions  are  rap id ly  vary ing  c o m p a r e d  with the charac ter i s t ic  t ime 
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scale of the system. An appropriate Fokker-Planck equation may be 
obtained and its solutions found, at least for the stationary probability 
densities. However, the phases displayed by such systems are strongly 
dependent on the correlation time of the noise used to drive them. (3'41 It is 
thus desirable to relax the restriction to white noise and investigate the 
behavior of these systems as a function of noise correlation time zc. 
Although, as a consequence of the central limit theorem, the environmental 
fluctuations can still be considered Gaussian, no theory exists for which 
exact analytical results can be obtained in the case of a nonlinear system 
driven by a Gaussian, nonwhite, process with arbitrary %. 

A phenomenon of particular interest in this context is the Frdedericksz 
transition which occurs in nematic liquid crystals (5) and in the orbital 
texture (6) of dipole-locked superfluid 3He-A. In each case, a thin slab of 
liquid held between parallel plates is subjected to a magnetic field such that 
the alignment of the liquid imposed by the plates lies perpendicular to that 
favored by the field. The texture remains unaffected by this competition 
until a critical value Hc of the field is reached, and the transition takes 
place. For  fields above Hc, the texture is increasingly influenced by the 
field, the effect being strongest midway between the plates. Fluctuations 
of H about its average value are expected ~3) to exert a marked influence 
on the critical value at which the transition occurs and on the phases 
displayed by the system. 

To calculate the effect of field fluctuations on the Fr6edericksz trans- 
ition is, for the general case, very difficult. Close to the transition, however, 
where the alignment angle remains close to its zero-field value, the 
phenomenological equation can be approximated to a high degree of 
accuracy. Under these conditions, the resultant equation can be solved 
exactly (3) for two situations: for white, Gaussianly distributed noise; and 
for exponentially correlated, dichotomous noise. The (physically more 
realistic) case of colored Gaussian noise cannot be treated exactly; the 
hope, however, is that, at least qualitatively, the behavior of a given system 
will not be strongly dependent on the type of noise used to drive it. 
Recent work (7) by Kai et al. on the (closely related) electrohydrodynamic 
instability would seem in part to substantiate this hope. The latter authors 
showed that shifts in the threshold voltage Vc needed to cause a nematic 
liquid crystal to undergo a transition to the Williams domain were not 
strongly dependent on noise type. 

In this paper, we describe how we have applied the technique of elec- 
tronic analogue simulation 2 to the problem, in two separate ways. First, we 

2 For a review of electronic analogue simulation see ref. 8, especially the chapters by Fronzoni 
(Chapter 8) and McClintock and Moss (Chapter 9). 
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have studied the phenomenological equation under dichotomous, colored, 
external noise; the measurements are compared with exact theoretical 
predictions. (3) Second, we have used the same electronic simulator to 
investigate the effect on the system of colored, Gaussian noise, a situation 
for which, as already mentioned, no analytic theory exists. It was hoped in 
this way to gain some insight into the extent to which one can reliably infer 
the behavior of a system under Gaussian colored noise from studies of its 
response to dichotomous fluctuations. 

2. A N A L O G U E  S I M U L A T I O N  OF THE FRI~EDERICKSZ 
T R A N S I T I O N  

I t  has been shown (3) that in the vicinity of the Fr~edericksz transition, 
a nematic liquid crystal should evolve according to the approximate 
stochastic differential equation 

= - 0  + (h + (0 - �89 3) (1)  

where h = H / H c ,  ~It = q]H~., H is the average magnetic field intensity, H c is 
the deterministic critical field (i.e., in the absence of fluctuations) at which 
the transition just occurs, and ro is the zero-field relaxation time. The state 
variable 0 is the angle between the nematic director and the preferred direc- 
tion of molecular alignment in the absence of a magnetic field. Equation (1) 
is used as the basis of the analogue simulation, with the stochastic field 
fluctuations t7, being modeled as either dichotomous or Gaussian noise 
processes. 

A schematic diagram of the electronic circuit used to mimic Eq. (1) is 
shown in Fig. 1. The voltage summation, integration, and amplification 
operations were accomplished by standard operational amplifiers, while 

fie), 

/ 
/ 

Fig. 1. Block diagram of the analogue electronic used to model Eq. (1). 



1386 Stocks e t  al. 

voltage multiplication was performed by commercially available integrated 
circuit multipliers (Analog Devices, type AD534KD). The multipliers also 
have the effect of dividing their outputs by ten, hence the need for 
amplification by an appropriate factor at various points in the circuit. 
Using the above operations, a function f (O)  was constructed, where 

f (O)  = +0 - (h + rl,) 2 (0 - -  �89 (2) 

f (O)  was then passed to an integrator with a transfer function, 

-1 I 0 = f (O)  dt (3) 
"c o 

thus reproducing Eq. (1). The voltage waveform O(t) characterizing the 
state of the system, available at the output of the integrator, was analyzed 
by means of a digital data processor (Nicolet LAB80) which constructed 
the stationary probability density Ps,(O). It was thus possible, by changing 
the appropriate parameters, to map out the transitional behavior of the 
stationary probability density as a function of the correlation time and 
intensity of the external noise. 

To obtain results comparable with theory, (3) t/, was initially modeled 
as dichotomous noise. The dichotomous noise generator constructed for 
this purpose is shown schematically in Fig. 2. This instrument was built 
around a single bistable device incorporating an operational amplifier. The 
bistable device was switched between its two stable states A and - A  when 
the input voltage attained magnitudes greater than a threshold voltage set 

measure  1 nF rms [eve[ 
g a p s s i a n e ~  ~ -~ ;  
noise 

RV3 dichotomous 
o noise output 

- ~ +  RV2 
Fig. 2. Circuit of the dichotomous noise generator used to drive the analogue simulator of 
Fig. 1. The right-hand operational amplifier acts as a bistable device which switches between 
its stable states whenever its input exceeds a positive or negative threshold voltage, thereby 
converting the input Gaussian noise into an exponentially correlated dichotomous output 
voltage. 
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internally in the device. Thus, by applying pseudo-white Gaussian noise to 
the input and by varying its intensity using RV1, the number of transitions 
between the two states and hence the correlation time of the dichotomous 
noise could be altered. Using the same data processor, the correlation time 
of the noise was determined as a funtion of the noise intensity measured at 
the input of the bistable, and a calibration curve constructed. A desired 
correlation time could then be selected by setting the input noise intensity 
to the appropriate value. The dichotomous noise was found to be exponen- 
tially correlated with a correlation function 

C ( r )  = Aae-I~1/~,. 

where r,. can be regarded as a measure of the average waiting time in one 
of the stable states. Offsets in the noise generator were compensated for by 
adjustment of RV2 such that the potential at A was zero, thereby ensuring 
that the mean output was zero. The output intensity of the noise generator 
could be controlled using the resistive attenuator RV3. 

The Gaussian noise was obtained from a Wande l&Gol te rmann  
model RG1 noise generator, which produces an accurately Gaussian noise 
voltage of constant spectral intensity over the band range 0-100 kHz. The 
noise source was used to drive the dichotomous noise generator, as well as 
for the Gaussian noise experiments themselves. For the latter experiments 
the noise was initially passed through the active, low-pass filter shown 
schematically in Fig. 3. This ensured that the noise had a well defined 
correlation time % and a correlation function 

C(r) = o-2e Izl/*c 

The variance of the noise a 2 was measured at the output of the filter 
by use of a specialized integrated circuit (Analog Devices type 
AD536AKD). The correlation time of the noise is determined by the time 

"white" no i se  ~ ~ >  coloured noise 
input > I ~' output 

measure 
rms Level 

Fig. 3. Simple active low-pass filter used to define the correlation time of the Gaussian noise 
used to drive the analogue simulator of Fig. 1. 
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constant rl C: Thus, by changing C it was possible to alter the correlation 
time of the noise independently of the gain of the filter and hence the noise 
intensity. 

3. RESULTS OF THE A N A L O G U E  E X P E R I M E N T S  

Horsthemke et al. (3) presented the results of their calculations in the 
form of phase diagrams mapped out on the 6-Tro plane. Here 6 is the 
reduced noise intensity ( = A / H e  or a / H  c, depending on the type of noise 
used) and 7 is the inverse correlation time of the noise. Phase diagrams 
were presented for three fixed values of the magnetic field intensity, 
H = 0 . 9 9 H c ,  1.01He, and 1.3He. The dichotomous and Gaussian noise 
experiments were carried out in essentially the same manner. After setting 
the magnetic field intensity parameter  to one of the three values of interest, 

(a) 

(b) 

Fig. 4. Typical examples of stationary densities measured for the analogue simulator of 
Fig. 1 when driven by exponentially correlated dichotomous noise with h = 1.01, 6 = 0.5, and 
(a) 7%= 1.15, (b) 7%=3.4, (c) 7%=6.8. The vertical lines indicate the positions of the 
supports. 
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the noise intensity was then fixed and the transitional behavior of Ps,(O) 
recorded for different values of the noise correlation time. The noise inten- 
sity was then changed and the procedure repeated. This was continued 
until the parameter space of interest had been covered. The criterion used 
to determine whether or not a phase transition had occurred was the same 
as that laid down by Horsthemke etaL, who argued that qualitative 
changes in the extrema of P~,(O) were what distinguished the different phase 
regions. To aid in the recording of the phase diagrams we thus assigned a 
unique symbol to each of the phases exhibiting qualitatively different 
extrema; the symbols were then plotted directly onto the 6-7% diagram as 
the corresponding probability densities were observed. 
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Fig. 5. Phase diagrams measured for the analogue simulator of Fig. 1 when driven by 
exponentially correlated dichotomous noise with (a) h = 0.99, (b) h = 1.01, (c) h = 1.30. The 
stationary densities measured in different parts of the 5-7T 0 plane were as indicated by the 
inset sketches. The solid curves are guides to the eye, to indicate the experimental transitional 
boundaries, and the dashed curves represent theoretical predictions by Horsthemke et  aL ~3~ 
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Some examples of stationary densities recorded for dichotomous noise 
are shown in Fig. 4, for the parameter values indicated. Using a large num- 
ber of densities such as these, the phase diagrams shown by the solid curves 
of Fig. 5 were then constructed. It may be noted, first, that all of the phase 
regions predicted (3) by Horsthemkeetal. (dashed curves) were in fact 
observed. Second, however, it is evident that the precise positions of the 
phase boundaries differ slightly from those predicted. We do not regard 
these discrepancies as significant: partly because of the systematic errors 
and nonidealities, amounting typically to a few percent, that are to be 
expected in analogue simulators(8); and partly because the transitional 
behavior of Pst(O) is not absolutely sharply defined, allowing a small 
amount of room for interpretation as to whether or not a phase boundary 
has been crossed. Subject to these qualifications, we regard the agreement 
between the theoretical predictions and the analogue experiments as 
gratifying. 
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Fig. 5 (contmued) 

The experimental results obtained for Gaussian noise are shown in 
Figs. 6 and 7. It can be seen immediately that there are some significant 
differences from the equivalent dichotomous noise results, both in the 
positioning and shape of the transition boundaries and, more importantly, 
in the type of phases observed. First, consider the two phase diagrams for 
which H =  0.99Hc (Figs. 5a and 7a). Only two of the predicted phases for 
dichotomous noise were observed in the Gaussian noise case, and then the 
associated phase regions occupied different areas in parameter space. 
Furthermore, phases which were not predicted for dichotomous noise were 
observed for the Gaussian, the converse also being true. Similar results are 
apparent for the other two sets of phase diagrams (comparisons of Figs. 5b 
with 7b, and Figs. 5c with 7c). In general, predicted phases, characterized 
by an increasing probability density at the upper support were not observed 
for Gaussian noise. This is most apparent in the two phase diagrams 
(Figs. 5c and 7c) for which H =  1.3H,. Here, three of the predicted phases 
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Fig. 6. Typical stationary densities measured for the analogue simulator of Fig. 1 when 
driven by exponentially correlated Gaussian noise with h = 1.01, 6 =0.5, and (a) ~0 = 0.33, 
(b) 7%= 1.7, (c) 7%= 2.7. The top of the density in (a) has been truncated by the graph 
plotting system. 

show an increase in the probabil i ty densities at the upper  support ,  whereas 
none of  these are observed in the Gaussian noise phase diagrams. 

4. D I S C U S S I O N  

It is evident from the results of the preceding section that the rich 
transit ional behavior  predicted for d icho tomous  noise is not  observed in 
the case of  Gaussian noise. We believe this is simply a consequence of the 
limited state space of  the d icho tomous  noise process. Due  to the overdam- 
ped nature of the system, the upper  state of the d icho tomous  processes 
imposes an upper  limit on the state space of  the system. Thus, on average, 
the system has time to relax to this upper state when the correlat ion time of 
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the noise becomes comparable with the relaxation time of the system. This 
results in a "buildup of probability" at this upper state limit, i.e., at the 
upper support  of the probability density. Such behavior would not be 
expected to occur if the noise were allowed to have a more general state 
space, as is the case with Gaussian noise. 

An important  similarity between the Gaussian and dichotomous noise 
results can now be explained. In the limit of rapidly varying fluctuations, 
the system displays the same phase for both types of noise. This is due to 
the fact that the system no longer has time to relax to any state limit 
imposed by the noise, i.e., the phase of the system is essentially independent 
of the state space of the noise. Thus, it is only to be expected that, in the 

' o / ' - '  . . . .  ' '  
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Fig. 7. Phase diagrams measured for the analogue simulator of Fig. 1 when driven by 
exponentially correlated Gaussian noise with (a) h=0.99, (b) h=l.01, (c) h=l.30. The 
stationary densities measured in different regions of the 6-'/% plane were as indicated by the 
inset sketches. The solid curves are guides to the eye to indicate the experimental transitional 
boundaries. 
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Fig. 7 (continued) 

white noise limit, the qualitative behavior of a system will be independent 
of the type of noise used to drive it. 

Another important similarity in the results can be seen by comparing 
the two sets of phase diagrams (Fig. 5a with 7a, and Fig. 5b with 7b) for 
which H=0.99He and H =  1.01He. The transition boundaries labeled a 
and b represent the Fr6edericksz transition in the presence of noise. The 
noise has had the effect of shifting the mean critical field Hc required to 
induce the transition. The positioning of these boundaries is similar in both 
the dichotomous and Gaussian noise phase diagrams; the shapes of the 
boundaries are also similar. Thus, it would seem that here, too, the shifts in 
H c induced by the noise are independent of the type of noise used to induce 
the transition. The Fr6edericksz transition is a hard transition (3J involving 
the lower support of the probability density. This is in contrast to the other 
hard transitions predicted for dichotomous noise, which involve the upper 
support of the probability density; as already discussed, these were not 
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Fig. 7 (continued) 

observed for Gaussian noise. For  values of H < H c  there exists a single 
deterministic state in which the system resides. It is this single state which 
imposes a lower state limit on the system in the presence of noise, the 
Fr6edericksz transition being a consequence of this lower state limit. This is 
a physical limit imposed by the system and is not a consequence of the 
state space of the dichotomous noise. Thus, one may expect, qualitatively 
at least, that the shifts in H c will not be dependent on the type of noise 
being applied. 

5. C O N C L U S I O N S  

We have confirmed exact analytical results, obtained by Horsthemke 
et  al., {3) for the effect of dichotomous field fluctuations on the Fr6edericksz 
transition. It is, however, apparent that certain aspects of these results 
cannot be generalized to describe the behavior of the system under the 
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influence of other types of noise. The limited state space of the dicho- 
tomous noise imposed artificial limits on the state space of the system; the 
resulting hard transitions were thus a characteristic of the dichotomous 
noise alone. Qualitatively similar results for the effect of dichotomous and 
Gaussian noise on the mean critical field Hc were obtained. This can be 
attributed to the fact that the Fr6edericksz transition is a consequence of a 
physical, lower state limit imposed by the system itself, and hence is largely 
independent of noise type. It was also shown that in the pseudo-white noise 
limit of very rapidly varying fluctuations the behavior of the system was 
again independent of noise type. However, from the theorist's point of 
view, the prime motivation for modeling the field fluctuations as a 
dichotomous noise process was to obtain results for an arbitrary 
correlation time. We have shown that it is just in this strongly colored limit 
that the state space of the noise becomes important and, although useful 
information can be obtained, caution must be exercised when generalizing 
the results to other noise types. 
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